SGKVN

Bài giải GIẢI TÍCH 12 - Bài 1. Nguyên hàm | Sách Bài Giải

Bài 1. Nguyên hàm - Bài giải GIẢI TÍCH 12 . Xem chi tiết nội dung bài Bài 1. Nguyên hàm và tải xuống miễn phí trọn bộ file PDF Sách Bài giải GIẢI TÍCH 12 | Sách Bài Giải

Câu hỏi 1 trang 93 SGK

Tìm hàm số F(x) sao cho F’(x) = f(x) nếu:

a) f(x) = 3x2 với x ∈ (-∞; +∞);

b) f(x) =  với x ∈ .

Lời giải:

a) F(x) = x3 vì (x3)' = 3x2

b) F(x) = tanx vì (tanx)' = .

Câu hỏi 2 trang 93 SGK

Hãy tìm thêm những nguyên hàm khác của các hàm số nêu trong Ví dụ 1.

Lời giải:

a) Có thể chọn F(x) = x2 + 8 do (F(x))' = (x2 + 8)’ = 2x + 0 = 2x.

Tổng quát F(x) = x2 + C với C là số thực.

b) Có thể chọn F(x) = lnx + 17, do (F(x))’ = , x ∈ (0; +∞).

Tổng quát F(x) = lnx + C, x ∈ (0;+∞) với C là số thực.

Câu hỏi 3 trang 93 SGK

Hãy chứng minh Định lý 1.

Lời giải:

Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))' = f(x). Vì C là hằng số nên (C)’ = 0.

Ta có:

(G(x))' = (F(x) + C)' = (F(x))' + (C)' = f(x) + 0 = f(x)

Vậy G(x) là một nguyên hàm của f(x).

Câu hỏi 4 trang 95 SGK

Hãy chứng minh Tính chất 3.

Lời giải:

Gọi F(x) là một nguyên hàm của f(x);

      G(x) là một nguyên hàm của g(x).

Ta có f(x)=F′(x),g(x)=G′(x).

Suy ra ∫[f(x) ± g(x)]dx = ∫[F′(x) ± G′(x)]dx = ∫[F(x) ± G(x)]′dx = F(x) ± G(x) + C

Lại có ∫f(x)dx ± ∫g(x)dx = ∫F′(x)dx ± ∫G′(x)dx = F(x) ± G(x) + C.

Vậy ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx (đpcm)

Câu hỏi 5 trang 96 SGK

Lập bảng theo mẫu dưới đây rồi dùng bảng đạo hàm trang 77 và trong SGK Đại số và Giải tích 11 để điền vào các hàm số thích hợp vào cột bên phải.

Lời giải:

f’(x) f(x) + C
0 C
αxα –1 xα + C

lnx + C nếu x > 0,

ln (– x) + C nếu x < 0.

ex ex + C
ax lna (a > 0, a ≠ 1) ax + C
cosx sin x + C
– sinx cosx + C

tanx + C

cotx + C

Câu hỏi 6 trang 98 SGK

a) Cho ∫(x - 1)10 dx. Đặt u = x – 1, hãy viết (x - 1)10dx theo u và du.

b) Cho . Đặt x = et, hãy viết theo t và dt.

Lời giải:

a) Ta có du = d(x – 1) = dx.

Suy ra: (x – 1)10dx = u10 du.

b) Ta có dx = d(et) = etdt, do đó = = tdt.

Câu hỏi 7 trang 99 SGK

Ta có (xcosx)’ = cosx – xsinx

hay  - xsinx = (xcosx)’ – cosx.

Hãy tính ∫ (xcosx)’ dx và ∫ cosxdx. Từ đó tính ∫ xsinxdx.

Lời giải:

Ta có ∫ (xcosx)’dx = xcosx + C1 và ∫ cosxdx = sinx + C2.

Từ đó

∫ xsinxdx = - ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = - xcosx – C1 + sinx + C2 = - xcosx + sinx + C.

Kiến thức áp dụng

Sử dụng công thức ∫f′(x)dx = f(x) + C và các tính chất của nguyên hàm.

Câu hỏi 8 trang 100 SGK

Cho P(x) là đa thức của x. Từ Ví dụ 9, hãy lập bảng theo mẫu dưới đây rồi điền u và dv thích hợp vào chỗ trống theo phương pháp nguyên phân hàm từng phần.

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx
P(x)    
exdx    

Lời giải:

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx
P(x) P(x) P(x)lnx
exdx cosxdx dx

Bài 1 trang 100 SGK

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

Lời giải:

a) Ta có: (-e-x)' = -e-x.(-x)' = e-x

⇒ -e-x là một nguyên hàm của hàm số e-x

⇒ ∫(e-x)dx = -e-x + C

Lại có : ( e-x )’ = e-x. (-x)’ = - e-x

Suy ra, e-x là một nguyên hàm của hàm số -e-x

Vậy ∫ -e-xdx = e-x + C

b) (sin2x)' = 2.sinx.(sinx)' = 2.sinx.cosx = sin2x

⇒ sin2x là một nguyên hàm của hàm số.

⇒ ∫sin2xdx = sin2x + C

 

Kiến thức áp dụng

+ F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu:

f’(x) = F(x)

+ Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì tất cả các hàm số có dạng F(x) + C (C là một hằng số bất kì) đều là nguyên hàm của hàm số f(x).

Kí hiệu: ∫f(x)dx = F(x) + C 

Bài 2 trang 100,101 SGK

Tìm nguyên hàm của các hàm số sau?

Lời giải:

Bài 3 trang 101 SGK

Sử dụng phương pháp biến số, hãy tính:

Lời giải:

Bài 4 trang 101 SGK

Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

a) ∫xln(1 + x)dx;

b) ∫(x2 + 2x − 1)exdx;

c) ∫xsin(2x + 1)dx;

d) ∫(1 − x)cosxdx.

Lời giải:

Kiến thức áp dụng

+ Phương pháp nguyên hàm từng phần:

Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:

∫u(x).v'(x)dx = u(x).v(x) ∫u'(x).v(x)dx

hay viết ngắn gọn:

∫udv = uv ∫vdu

+ Một số công thức nguyên hàm:

 

 

Xem và tải xuống trọn bộ sách giáo khoa Bài giải GIẢI TÍCH 12

Tổng số đánh giá:

Xếp hạng: / 5 sao

Sách giáo khoa liên quan

Ngữ Văn 12 - Tập Một

Sách Lớp 12 NXB Giáo Dục Việt Nam

Ngữ Văn 12 - Tập Hai

Sách Lớp 12 NXB Giáo Dục Việt Nam

Ngữ Văn 12 (Nâng Cao) - Tập Một

Sách Lớp 12 NXB Giáo Dục Việt Nam

Công Nghệ 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Địa Lý 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Địa Lý 12 Nâng Cao

Địa lý 12 - Nâng cao

Ngữ Văn 12 (Nâng Cao) - Tập Hai

Sách Lớp 12 NXB Giáo Dục Việt Nam

Giáo Dục Quốc Phòng - An Ninh 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Lịch Sử 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Lịch Sử 12 (Nâng Cao)

Sách Lớp 12 NXB Giáo Dục Việt Nam

Tin Học 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Sinh Học 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Gợi ý cho bạn

toan-8-tap-1-907

Toán 8 - Tập 1

Sách Lớp 8 Cánh Diều

tieng-anh-11-explore-english-3040

Tiếng Anh 11 (Explore English)

Tiếng Anh 11 (Explore English)

hoat-dong-trai-nghiem-1-7

Hoạt động trải nghiệm 1

Sách Lớp 1 Cánh Diều

ngu-van-6-tap-2-127

Ngữ Văn 6 - Tập 2

Sách Cánh Diều Lớp 6

Nhà xuất bản

canh-dieu-1

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

chan-troi-sang-tao-2

Chân Trời Sáng Tạo

Bộ sách giáo khoa của Nhà xuất bản Chân Trời Sáng Tạo

ket-noi-tri-thuc-voi-cuoc-song-3

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

giao-duc-viet-nam-5

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

sach-bai-giai-6

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

sach-bai-tap-7

Sách Bài Tập

Sách bài tập tất cả các khối lớp

tai-lieu-hoc-tap-9

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

global-success-bo-giao-duc-dao-tao-11

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

nxb-dai-hoc-su-pham-tphcm-12

NXB - Đại Học Sư Phạm TPHCM

NXB - Đại Học Sư Phạm TPHCM

Chủ đề

Liên Kết Chia Sẽ

ok365 ** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.