Trang 110
SỐ VÀ ĐẠI SỐ
1. Tính giá trị của các biểu thức sau:
a) ;
b) .
2. Tính một cách hợp lí.
a) .
b) .
3. a) Tìm x, biết .
b) Có hay không số x thoả mãn điều kiện:
c) Hãy ước tính (không tra bảng hay dùng máy tính) số dương x (lấy đến 1 chữ số sau dấu phẩy) sao cho x² = 13. Sau đó dùng máy tính cầm tay (hoặc tra bảng) để tính x, chính xác đến hàng phần chục để kiểm tra xem con số em ước tính chênh lệch bao nhiêu so với kết quả tính bằng máy tính.
4. Hai người thợ cùng làm tổng cộng được 136 sản phẩm (thời gian làm như nhau). Hỏi mỗi người thợ làm được bao nhiêu sản phẩm, biết rằng người thợ thứ nhất làm một sản phẩm mất 9 phút, còn người thứ hai làm một sản phẩm mất 8 phút?
5. Ba khối 6, 7, 8 của một trường Trung học cơ sở tham gia quyên góp vở tặng các bạn vùng khó khăn. Biết rằng số vở quyên góp được của ba khối theo thứ tự tỉ lệ thuận với 8, 7, 6 và số vở khối 8 quyên góp được ít hơn số vở khối 6 quyên góp được là 80 quyển.
Hỏi mỗi khối quyên góp được bao nhiêu quyển vở?
6. Cho hai đa thức A = 6x3 - 4x2 - 12x-7 và B = 2x² - 7.
a) Xác định hệ số cao nhất và hệ số tự do trong mỗi đa thức đã cho.
b) Tính giá trị của đa thức A + B tại x = -2.
c) Chứng minh rằng x = 0, x = −1 và x = 2 là ba nghiệm của đa thức A – B.
d) Thực hiện phép nhân A . B bằng hai cách.
e) Tìm đa thức R có bậc nhỏ hơn 2 sao cho hiệu A – R chia hết cho B.
7. Người ta đổ đầy nước vào một cái bể hình hộp chữ nhật, sau đó nhấn chìm một khối lập phương (đặc) có độ dài các cạnh bằng x (dm) vào trong bể. Biết rằng chiều rộng, chiều dài và chiều cao của bể lần lượt bằng x + 1, x + 3 và x + 2 (xem hình bên).
a) Tìm đa thức biểu thị thể tích nước còn lại trong bể.
Trang 111
b) Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức trong câu a.
c) Sử dụng kết quả câu a để tính lượng nước còn lại trong bể (đơn vị: dm³) khi x = 7 dm.
HÌNH HỌC VÀ ĐO LƯỜNG
8. Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
a) Chứng minh rằng △ADM = △BDC. Từ đó suy ra AM = BC và AM // BC.
b) Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.
c) Chứng minh rằng ba điểm M, A, N thẳng hàng và A là trung điểm của đoạn MN.
9. Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC.
a) Chứng minh AH⊥ BC.
b) Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM = CN. Chứng minh rằng △ABM = △ΑCN.
c) Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.
10. Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
a) ΔΑΒΗ = ΔDBH;
b) Tam giác AED cân;
c) EM > ED;
d) Tam giác BCM là tam giác đều và CE = 2EA, biết = 60°.
THỐNG KÊ VÀ XÁC SUẤT
11. Bình thu thập số liệu về số học sinh phổ thông của cả nước từ năm 2015 đến năm 2020 và vẽ được biểu đồ sau:
Trang 112
a) Số học sinh phổ thông cả nước từ năm 2015 đến năm 2020 có xu thế tăng hay giảm?
b) Hãy lập bảng thống kê về số lượng học sinh phổ thông của cả nước từ năm 2015 đến năm 2020.
c) Theo em, Bình đã dùng cách nào trong các cách thu thập dữ liệu đã học để có được số liệu trên?
12. Biểu đồ sau đây cho biết tổng số huy chương thế giới mà thể thao Việt Nam giành được trong các năm từ 2015 đến 2019:
(Theo Tổng cục Thống kê)
a) Lập bảng thống kê về số huy chương thế giới mà thể thao Việt Nam đạt được từ năm 2015 đến năm 2019.
b) Trong các năm trên, năm nào thể thao Việt Nam giành được ít huy chương thế giới nhất?
c) Tỉ lệ các loại huy chương thế giới của thể thao Việt Nam trong năm 2019 được cho trong biểu đồ sau:
(Theo Tổng cục Thống kê)
Tính số lượng mỗi loại huy chương thế giới mà thể thao Việt Nam giành được trong năm 2019.
Trang 113
13. Trong trò chơi Vòng quay may mắn, người chơi sẽ quay một bánh xe hình tròn. Bánh xe được chia làm 12 hình quạt bằng nhau như hình bên. Trong mỗi hình quạt có ghi số điểm mà người chơi sẽ nhận được. Có hai hình quạt ghi 100 điểm; hai hình quạt ghi 200 điểm; hai hình quạt ghi 300 điểm; hai hình quạt ghi 400 điểm; một hình quạt ghi 500 điểm; hai hình quạt ghi 1 000 điểm và một hình quạt ghi 2 000 điểm. Khi bánh xe dừng lại, mũi tên (đặt cố định ở phía trên) chỉ vào hình quạt nào thì người chơi nhận được số điểm ghi trong hình quạt đó.
Bạn Mai tham gia trò chơi và quay một lần. Tính xác suất để mũi tên chỉ vào hình quạt:
a) Có số điểm nhỏ hơn 2000;
b) Có số điểm nhỏ hơn 100;
c) Có số điểm lớn hơn 300;
d) Có số điểm là 2 000.