SGKVN

Bài giải HÌNH HỌC 12 - Bài 3. Khái niệm về thể tích của khối đa diện | Sách Bài Giải

Bài 3. Khái niệm về thể tích của khối đa diện - Bài giải HÌNH HỌC 12. Xem chi tiết nội dung bài Bài 3. Khái niệm về thể tích của khối đa diện và tải xuống miễn phí trọn bộ file PDF Sách Bài giải HÌNH HỌC 12 | Sách Bài Giải

Câu hỏi 1 trang 22 SGK

Có thể chia (H1) thành bao nhiêu khối lập phương bằng (H0)?

Lời giải:

Có thể chia (H1) thành 5 khối lập phương (H0).

Câu hỏi 2 trang 22 SGK

Có thể chia (H2) thành bao nhiêu khối hộp chữ nhật bằng (H1)?

Lời giải:

Có thể chia (H2) thành 4 khối hộp chữ nhật (H1).

Câu hỏi 3 trang 22 SGK

Có thể chia (H) thành bao nhiêu khối hộp chữ nhật bằng (H2) ?...

Lời giải:

Có thể chia (H) thành 3 khối hộp chữ nhật (H2).

Câu hỏi 4 trang 24 SGK

Kim tự tháp Kê-ốp ở Ai Cập (h.1.27) được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 147 m, cạnh đáy dài 230 m. Hãy tính thể tích của nó.

Lời giải:

Kim tự tháp là khối chóp tứ giác đều nên đáy là hình vuông có cạnh 230 m.

Diện tích đáy là:

230.230 = 52 900 (m2).

Thể tích kim tự tháp Kê-ốp là:

V = (1/3).52900.147 = 2592100 (m3).

Bài 1 trang 25 SGK

Tính thể tích khối tứ diện đều cạnh a.

Lời giải:

Gọi ABCD là tứ diện đều cạnh a.

Gọi H là tâm đường tròn ngoại tiếp tam giác BCD

⇒ HB = HC = HD nên H nằm trên trục đường tròn ngoại tiếp tam giác BCD. (1)

Lại có: AB = AC = AD vì ABCD là tứ diện đều

⇒ HA là trục đường tròn ngoại tiếp tam giác BCD

⇒ HA ⊥ (BCD)

Vì tam giác BCD là tam giác đều nên H đồng thời trọng tâm tam giác BCD. Gọi M là trung điểm của CD.

Xét tam giác BCD ta có:

Áp dụng định lí pytago vào tam giác vuông AHB ta được:

Diện tích tam giác đều BCD cạnh a là:

Do đó, thể tích khối tứ diện đều ABCD là:

Kiến thức áp dụng

+ Thể tích khối chóp có diện tích đáy B và chiều cao h là:

+ Diện tích tam giác đều cạnh a là:

Bài 2 trang 25 SGK

Tính thể tích khối bát diện đều cạnh a.

Lời giải:

Gọi khối bát diện đều là SABCDS’ cạnh a.

* Ta chia khối bát diện thành hai khối chóp tứ giác đều bằng nhau là:

S. ABCD và S’. ABCD có cạnh bằng a.

Khi đó, VSABCDS’ = VS.ABCD + VS’.ABCD = 2.VS.ABCD

Gọi O là giao điểm của AC và BD suy ra: SO ⊥ (ABCD)

* Ta tính thể tính khối tứ diện đều cạnh a.

Tứ giác ABCD là hình vuông cạnh a nên có diện tích là: SABCD = a2

Ta có:

Áp dụng định lí pytago vào tam giác SOA ta có:

Thể tích khối tứ diện đều S.ABCD là:

Thể tích khối bát diện đều cạnh a là:

Bài 3 trang 25 SGK

Cho hình hộp ABCD.A’B’C’D’. Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện ACB’D’.

Lời giải:

Gọi S là diện tích đáy ABCD và h là chiều cao của khối hộp thì thể tích của khối hộp.

⇒ V = S.h

Chia khối hộp thành khối tứ diện ACB′D′ và bốn khối chóp A.A′B′D′, C.C′B′D′, B′.BAC và D′.DAC.

Xét khối chóp A.A′B′D′ có diện tích đáy SA′B′D′ = S/2 và chiều cao bằng h.

Do đó:

Tương tự như vậy ta chứng minh được:

Vậy VACB′D′ = V − (VA.A′B′D′ + VC.C′B′D′ + VB′BAC + VD′.DAC)

Bài 4 trang 25 SGK

Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:

Lời giải:

Gọi H và K lần lượt là hình chiếu vuông góc của A và A’ trên mp(SBC),

Đặt AH = h1 và A’K = h2 ,

S1 và S2 lần lượt là diện tích của hai tam giác SBC và SB’C’.

* Do A’K// AH nên bốn điểm A, A’; K và H đồng phẳng. (1)

Lại có, 3 điểm A, S, H đồng phẳng (2).

Từ (1) và (2) suy ra, 5 điểm A, A’, S. H và K đồng phẳng.

Trong mp(ASH) ta có:

⇒ Ba điểm S, H và K thẳng hàng.

* Ta có:

Bài 5 trang 26 SGK

Cho tam giác ABC, vuông cân ở A và AB = a. Trên đường thẳng qua C, vuông góc với mặt phẳng (ABC) lấy điểm D sao cho CD = a. Mặt phẳng qua C vuông góc với BD cắt BD tại F và cắt AD tại E. Tính thể tích khối tứ diện CDEF theo a.

Lời giải:

Bài 6 trang 26 SGK

Cho hai đường thẳng chéo nhau d và d’. Đoạn thẳng AB có độ dài bằng a trượt trên d, đoạn thẳng CD có độ dài bằng b trượt trên d’. Chứng minh rằng khối tứ diện ABCD có thể tích không đổi.

Lời giải:

Gọi h là khoảng cách hai đường thẳng d và d’, gọi α là góc tạo bởi hai đường thẳng d và d’.

Lần lượt vẽ hai hình bình hành BACF và ACDE.

Khi đó, ABE.CFD là hình lăng trụ tam tam giác có chiều cao h; AE = CD = b và

Gọi S là diện tích đáy của hình lăng trụ .

Ta chia hình lăng trụ ABE. CFD thành ba hình chóp tam giác là: D. ABE, B. CFD, D.ABC. Ta có:

Do đó, thể tích khối tứ diện ABCD không đổi.

 

Xem và tải xuống trọn bộ sách giáo khoa Bài giải HÌNH HỌC 12

Tổng số đánh giá:

Xếp hạng: / 5 sao

Sách giáo khoa liên quan

Ngữ Văn 12 - Tập Một

Sách Lớp 12 NXB Giáo Dục Việt Nam

Ngữ Văn 12 - Tập Hai

Sách Lớp 12 NXB Giáo Dục Việt Nam

Ngữ Văn 12 (Nâng Cao) - Tập Một

Sách Lớp 12 NXB Giáo Dục Việt Nam

Công Nghệ 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Địa Lý 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Địa Lý 12 Nâng Cao

Địa lý 12 - Nâng cao

Ngữ Văn 12 (Nâng Cao) - Tập Hai

Sách Lớp 12 NXB Giáo Dục Việt Nam

Giáo Dục Quốc Phòng - An Ninh 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Lịch Sử 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Lịch Sử 12 (Nâng Cao)

Sách Lớp 12 NXB Giáo Dục Việt Nam

Tin Học 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Sinh Học 12

Sách Lớp 12 NXB Giáo Dục Việt Nam

Gợi ý cho bạn

dia-li-8-538

Địa Lí 8

Sách Lớp 8 NXB Giáo Dục Việt Nam

ngu-van-9-tap-2-965

Ngữ Văn 9 - Tập 2

Sách Lớp 9 Chân Trời Sáng Tạo

toan-9-tap-1-962

Toán 9 - Tập 1

Sách Lớp 9 Chân Trời Sáng Tạo

my-thuat-do-hoatranh-in-1173

Mỹ Thuật Đồ Hoạ_Tranh in

Mỹ Thuật Đồ Hoạ_Tranh in 11

dao-duc-2-271

Đạo Đức 2

Sách Lớp 2 Cánh Diều

Nhà xuất bản

canh-dieu-1

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

chan-troi-sang-tao-2

Chân Trời Sáng Tạo

Bộ sách giáo khoa của Nhà xuất bản Chân Trời Sáng Tạo

ket-noi-tri-thuc-voi-cuoc-song-3

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

giao-duc-viet-nam-5

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

sach-bai-giai-6

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

sach-bai-tap-7

Sách Bài Tập

Sách bài tập tất cả các khối lớp

tai-lieu-hoc-tap-9

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

Chủ đề

Liên Kết Chia Sẽ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.